Reference: Shan C, et al. (2023) The impacts of nicotinamide and inositol on the available cells and product performance of industrial baker's yeasts. Bioresour Bioprocess 10(1): 41.

Reference Help

Abstract


A suitable nutrient supply, especially of vitamins, is very significant for the deep display of the inherent genetic properties of microorganisms. Here, using the chemically defined minimal medium (MM) for yeast, nicotinamide and inositol were confirmed to be more beneficial for the performance of two industrial baker's yeasts, a conventional and a high-sugar-tolerant strain. Increasing nicotinamide or inositol to proper levels could enhance the both strains on cell growth and activity and product performance, including trehalose accumulation and leavening performance. The activity of key enzymes (PCK, TPS) and the content of intermediate metabolites (G6P, UDPG) in the trehalose synthesis pathway were promoted by a moderate supply of nicotinamide and inositol. That were also proved that an appropriate amount of niacinamide promoted the transcription of longevity-related genes (PNC1, SIR2), and the proper concentration of inositol altered the phospholipid composition in cells, namely, phosphatidylinositol and phosphatidyl choline. Furthermore, the cell growth and the leavening performance of the both strains were promoted after adjusting inositol to choline to the proper ratio, resulting directly in content changes of phosphatidylinositol and phosphatidyl choline in the cells. While the two strains responded to the different proper ratio of inositol to choline probably due to their specific physiological characteristics. Such beneficial effects of increased nicotinamide levels were confirmed in natural media, molasses and corn starch hydrolyzed sugar media. Meanwhile, such adjustment of inositol to choline ratio could lessen the inhibition of excess inositol on cell growth of the two tested strains in corn starch hydrolyzed sugar media. However, in molasse, such phenomenon was not observed probably since there was higher Ca(2+) in it. The results indicated that the effects of nutrient factors, such as vitamins, on cell growth and other properties found out from the simple chemically defined minimal medium were an effective measure to use in improving the recipe of natural media at least for baker's yeast.

Reference Type
Journal Article
Authors
Shan C, Xia T, Liu J, Wang Y, Bai P, Xu L, Li Z, Zhao J, Bao X
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference