Reference: Wang L, et al. (2024) Saccharomyces cerevisiae cellular engineering for the production of FAME biodiesel. AMB Express 14(1): 42.

Reference Help

Abstract


The unsustainable and widespread utilization of fossil fuels continues to drive the rapid depletion of global supplies. Biodiesel has emerged as one of the most promising alternatives to conventional diesel, leading to growing research interest in its production. Microbes can facilitate the de novo synthesis of a type of biodiesel in the form of fatty acid methyl esters (FAMEs). In this study, Saccharomyces cerevisiae metabolic activity was engineered to facilitate enhanced FAME production. Initially, free fatty acid concentrations were increased by deleting two acetyl-CoA synthetase genes (FAA1, FAA4) and an acyl-CoA oxidase gene (POX1). Intracellular S-adenosylmethionine (SAM) levels were then enhanced via the deletion of an adenosine kinase gene (ADO1) and the overexpression of a SAM synthetase gene (SAM2). Lastly, the S. cerevisiae strain overproducing free fatty acids and SAM were manipulated to express a plasmid encoding the Drosophila melanogaster Juvenile Hormone Acid O-Methyltransferase (DmJHAMT). Using this combination of engineering approaches, a FAME concentration of 5.79 +/- 0.56 mg/L was achieved using these cells in the context of shaking flask fermentation. To the best of our knowledge, this is the first detailed study of FAME production in S. cerevisiae. These results will provide a valuable basis for future efforts to engineer S. cerevisiae strains for highly efficient production of biodiesel.

Reference Type
Journal Article
Authors
Wang L, Liu B, Meng Q, Yang C, Hu Y, Wang C, Wu P, Ruan C, Li W, Cheng S, ... Show all
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference