Reference: Pan L, et al. (2024) A protein network refinement method based on module discovery and biological information. BMC Bioinformatics 25(1): 157.

Reference Help

Abstract


BACKGROUND: The identification of essential proteins can help in understanding the minimum requirements for cell survival and development to discover drug targets and prevent disease. Nowadays, node ranking methods are a common way to identify essential proteins, but the poor data quality of the underlying PIN has somewhat hindered the identification accuracy of essential proteins for these methods in the PIN. Therefore, researchers constructed refinement networks by considering certain biological properties of interacting protein pairs to improve the performance of node ranking methods in the PIN. Studies show that proteins in a complex are more likely to be essential than proteins not present in the complex. However, the modularity is usually ignored for the refinement methods of the PINs. METHODS: Based on this, we proposed a network refinement method based on module discovery and biological information. The idea is, first, to extract the maximal connected subgraph in the PIN, and to divide it into different modules by using Fast-unfolding algorithm; then, to detect critical modules according to the orthologous information, subcellular localization information and topology information within each module; finally, to construct a more refined network (CM-PIN) by using the identified critical modules. RESULTS: To evaluate the effectiveness of the proposed method, we used 12 typical node ranking methods (LAC, DC, DMNC, NC, TP, LID, CC, BC, PR, LR, PeC, WDC) to compare the overall performance of the CM-PIN with those on the S-PIN, D-PIN and RD-PIN. The experimental results showed that the CM-PIN was optimal in terms of the identification number of essential proteins, precision-recall curve, Jackknifing method and other criteria, and can help to identify essential proteins more accurately.

Reference Type
Journal Article
Authors
Pan L, Wang H, Yang B, Li W
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference