Reference: Polotnianka RM, et al. (1998) The yeast Ku heterodimer is essential for protection of the telomere against nucleolytic and recombinational activities. Curr Biol 8(14):831-4

Reference Help

Abstract


The Ku heterodimer, conserved in a wide range of eukaryotes, plays a multiplicity of roles in yeast. First, binding of Ku, which is composed of a 70 kDa (Hdf1p) and an 80 kDa (Hdf2p) subunit [1-3], to double-strand breaks promotes non-homologous end-to-end joining of DNA [3]. Second, Ku appears to participate in DNA replication, regulating both the number of rounds of replication permissible within the cell cycle and the structure of the initiation complex [3,4]. Furthermore, mutations in HDF1 or HDF2 rapidly reduce telomeric poly (TG1-3) tract size [1-3], hinting also at a possible telomeric function of Ku. We show here that the two subunits of the Ku heterodimer play a key role in maintaining the integrity of telomere structure. Mutations in either Ku subunit increased the single-strandedness of the telomere in a cell-cycle-independent fashion, unlike wild-type cells which form 3' poly(TG1-3) overhangs exclusively in late S phase [5]. In addition, mutations enhanced the instability of elongated telomeres to degradation and recombination. Both Ku subunits genetically interacted with the putative single-stranded telomere-binding protein Cdc13p. We propose that Ku protects the telomere against nucleases and recombinases.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Polotnianka RM, Li J, Lustig AJ
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference