Reference: Thurston AK, et al. (2018) Genome Instability Is Promoted by the Chromatin-Binding Protein Spn1 in Saccharomyces cerevisiae. Genetics 210(4):1227-1237

Reference Help

Abstract


Cells expend a large amount of energy to maintain their DNA sequence. DNA repair pathways, cell cycle checkpoint activation, proofreading polymerases, and chromatin structure are ways in which the cell minimizes changes to the genome. During replication, the DNA-damage tolerance pathway allows the replication forks to bypass damage on the template strand. This avoids prolonged replication fork stalling, which can contribute to genome instability. The DNA-damage tolerance pathway includes two subpathways: translesion synthesis and template switch. Post-translational modification of PCNA and the histone tails, cell cycle phase, and local DNA structure have all been shown to influence subpathway choice. Chromatin architecture contributes to maintaining genome stability by providing physical protection of the DNA and by regulating DNA-processing pathways. As such, chromatin-binding factors have been implicated in maintaining genome stability. Using Saccharomyces cerevisiae, we examined the role of Spn1 (Suppresses postrecruitment gene number 1), a chromatin-binding and transcription elongation factor, in DNA-damage tolerance. Expression of a mutant allele of SPN1 results in increased resistance to the DNA-damaging agent methyl methanesulfonate, lower spontaneous and damage-induced mutation rates, along with increased chronological life span. We attribute these effects to an increased usage of the template switch branch of the DNA-damage tolerance pathway in the spn1 strain. This provides evidence for a role of wild-type Spn1 in promoting genome instability, as well as having ties to overcoming replication stress and contributing to chronological aging.

Reference Type
Journal Article | Research Support, N.I.H., Extramural | Research Support, U.S. Gov't, Non-P.H.S.
Authors
Thurston AK, Radebaugh CA, Almeida AR, Argueso JL, Stargell LA
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference