The Saccharomyces Genome Database (SGD) provides comprehensive integrated biological information for the budding yeast Saccharomyces cerevisiae along with search and analysis tools to explore these data, enabling the discovery of functional relationships between sequence and gene products in fungi and higher organisms.
Cold Spring Harbor Laboratory, New York
National Harbor | Washington DC Metro Area
Stanford University will be closed for two weeks starting Wednesday, December 21, and will reopen on Wednesday, January 4, 2023. SGD staff members will be taking time off, but the website will be up and running throughout the winter break, and we will resume responding to user requests and questions in the new year.
Read MoreWe are proud that SGD has been included in the first list of Global Core Biodata Resources (GCBRs) announced by the Global Biodata Coalition (GBC)! This collection of 37 resources comprises deposition databases which archive and preserve primary research data, and knowledgebases, such as SGD, that add value to research data through expert curation and annotation. The […]
Read MoreGene transcription — the elaborate process that our cells use to read genetic information stored in DNA – was long thought to be turned on only when certain regulatory factors traveled to specific DNA sequences. In a new study published in Genes & Development, Mittal et al., 2022, discovered that a subset of genes has their transcription […]
Read MoreSGD has updated our RNA pages to add secondary structures provided by RNAcentral and generated by R2DT. Thumbnails and linkouts to RNAcentral via RNAcentral IDs are shown on the Summary and Sequence pages. Interactive secondary structure viewers are available on the Sequence pages. Take the pages for a spin! For more information about the structures, please see […]
Read MoreThere are ~400 origins of replication in yeast, each of which can be “licensed” by the binding of the conserved origin recognition complex (ORC) and then the MCM replicative helicase complex, all of which happens in G1 phase. During the subsequent S phase, origins are then “activated” by binding of several other replication factors, leading […]
Read More