Sánchez BJ, et al. (2017) Improving the phenotype predictions of a yeast genome-scale metabolic model by incorporating enzymatic constraints. Mol Syst Biol 13(8):935 PMID:28779005
Garcia-Albornoz M, et al. (2014) BioMet Toolbox 2.0: genome-wide analysis of metabolism and omics data. Nucleic Acids Res 42(Web Server issue):W175-81 PMID:24792167
Thelander M, et al. (2007) The moss genes PpSKI1 and PpSKI2 encode nuclear SnRK1 interacting proteins with homologues in vascular plants. Plant Mol Biol 64(5):559-73 PMID:17533513
Nilsson A, et al. (2005) Cofactor dependence in furan reduction by Saccharomyces cerevisiae in fermentation of acid-hydrolyzed lignocellulose. Appl Environ Microbiol 71(12):7866-71 PMID:16332761
Thomsson E, et al. (2003) Carbon starvation can induce energy deprivation and loss of fermentative capacity in Saccharomyces cerevisiae. Appl Environ Microbiol 69(6):3251-7 PMID:12788723
Nilsson A, et al. (2002) On-line estimation of sugar concentration for control of fed-batch fermentation of lignocellulosic hydrolyzates by Saccharomyces cerevisiae. Bioprocess Biosyst Eng 25(3):183-91 PMID:14508677
Nilsson A, et al. (2001) Fermentative capacity after cold storage of baker's yeast is dependent on the initial physiological state but not correlated to the levels of glycolytic enzymes. Int J Food Microbiol 71(2-3):111-24 PMID:11789928
Nilsson A, et al. (2001) Use of dynamic step response for control of fed-batch conversion of lignocellulosic hydrolyzates to ethanol. J Biotechnol 89(1):41-53 PMID:11472798
Nilsson A, et al. (2001) The catabolic capacity of Saccharomyces cerevisiae is preserved to a higher extent during carbon compared to nitrogen starvation. Yeast 18(15):1371-81 PMID:11746599
Larsson C, et al. (1997) Glycolytic flux is conditionally correlated with ATP concentration in Saccharomyces cerevisiae: a chemostat study under carbon- or nitrogen-limiting conditions. J Bacteriol 179(23):7243-50 PMID:9393686