Baker RW, et al. (2015) A direct role for the Sec1/Munc18-family protein Vps33 as a template for SNARE assembly. Science 349(6252):1111-4 PMID:26339030
Zick M, et al. (2014) Membranes linked by trans-SNARE complexes require lipids prone to non-bilayer structure for progression to fusion. Elife 3:e01879 PMID:24596153
Xu H and Wickner WT (2012) N-terminal domain of vacuolar SNARE Vam7p promotes trans-SNARE complex assembly. Proc Natl Acad Sci U S A 109(44):17936-41 PMID:23071309
Collins KM and Wickner WT (2007) Trans-SNARE complex assembly and yeast vacuole membrane fusion. Proc Natl Acad Sci U S A 104(21):8755-60 PMID:17502611
Decker BL and Wickner WT (2006) Enolase activates homotypic vacuole fusion and protein transport to the vacuole in yeast. J Biol Chem 281(20):14523-8 PMID:16565073
Collins KM, et al. (2005) Sec17p and HOPS, in distinct SNARE complexes, mediate SNARE complex disruption or assembly for fusion. EMBO J 24(10):1775-86 PMID:15889152
Merz AJ and Wickner WT (2004) Resolution of organelle docking and fusion kinetics in a cell-free assay. Proc Natl Acad Sci U S A 101(32):11548-53 PMID:15286284
Seals DF, et al. (2000) A Ypt/Rab effector complex containing the Sec1 homolog Vps33p is required for homotypic vacuole fusion. Proc Natl Acad Sci U S A 97(17):9402-7 PMID:10944212
Nicolson TA, et al. (1995) A truncated form of the Pho80 cyclin redirects the Pho85 kinase to disrupt vacuole inheritance in S. cerevisiae. J Cell Biol 130(4):835-45 PMID:7642701
Shaw JM and Wickner WT (1991) vac2: a yeast mutant which distinguishes vacuole segregation from Golgi-to-vacuole protein targeting. EMBO J 10(7):1741-8 PMID:2050111
Weisman LS, et al. (1990) Mutants of Saccharomyces cerevisiae that block intervacuole vesicular traffic and vacuole division and segregation. Proc Natl Acad Sci U S A 87(3):1076-80 PMID:1689059
Cunningham KW and Wickner WT (1989) Yeast KEX2 protease and mannosyltransferase I are localized to distinct compartments of the secretory pathway. Yeast 5(1):25-33 PMID:2648696