Reference: Tran-Dinh S, et al. (1991) Determination of flux through different metabolite pathways in Saccharomyces cerevisiae by 1H-NMR and 13C-NMR spectroscopy. Eur J Biochem 201(3):715-21

Reference Help

Abstract


We propose an experimental approach combining 1H-NMR and 13C-NMR spectroscopy to investigate metabolite flux in cells under physiological conditions and present a mathematical model giving the relationships between the following different parameters. 13C fractional enrichment, fluxes in competing pathways, metabolite concentration and experimental time. This model has been used for determining the absolute and/or relative values of five fluxes involving pyruvate, ethanol, acetyl-CoA and glutamate via the Krebs cycle in glucose-grown repressed Saccharomyces cerevisiae cells fed with [1-13C]glucose and/or unlabeled ethanol. The glucose consumption and the production of various compounds such as ethanol, glycerol, trehalose etc. were studied qualitatively and/or quantitatively as a function of time. The 13C fractional enrichment of [2-13C]ethanol was determined by observing the proton resonance of the methyl group. Addition of 25 mM unlabeled ethanol shows no significant effect on the glucose consumption or the production of any metabolites. However unlabeled ethanol exerts a strong influence on the enrichment of glutamate C4, but only induces an insignificant change on glutamate C2 and C3. Apart from the fact that ethanol is a potential precursor of acetyl-CoA as expected, these results indicate that (a) the probability for citrate and 2-oxoglutarate to make one turn or more in the Krebs cycle is negligible and (b) the scrambling between C4 and C3 via the glyoxylate shunt is virtually absent. The flux of ethanol formation from pyruvate is about three-times and nine-times greater than that of ethanol consumption and acetyl-CoA formation, respectively, from pyruvate via pyruvate dehydrogenase. Without addition of unlabeled ethanol, the ratio of the integrated resonance of glutamate (C2 + C3)/C4 reflecting the activity of pyruvate carboxylase relative to that of citrate synthase, is about 1.1. By comparing the absolute values of the different fluxes, it was found that 88% of the glucose was used to synthetize ethanol but the observed concentration of ethanol in the supernatant represents only 58% of the glucose consumption. The validity of the present model was supported by the data obtained from similar experiments using unlabeled ethanol and non-NMR techniques.

Reference Type
Journal Article
Authors
Tran-Dinh S, Herve M, Wietzerbin J
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference