Reference: Cao SN, et al. (2018) The pre-rRNA processing factor Nop53 regulates fungal development and pathogenesis via mediating production of reactive oxygen species. Environ Microbiol 20(4):1531-1549

Reference Help

Abstract


Botrytis cinerea is a necrotrophic plant fungal pathogen that annually causes enormous economic losses worldwide. The ribosome is an organelle for cellular protein biosynthesis. However, little is known about how the ribosome operates as a machine to mediate microbial pathogenesis. Here, we demonstrate that Nop53, a late-acting factor for 60S ribosomal subunit maturation, is crucial for the pathogen's development and virulence. BcNop53 is functionally equivalent to yeast nop53p. Complementation of BcNOP53 completely restored the growth defect of the yeast Δnop53 mutant. BcNop53 is located in nuclei and disruption of BcNOP53 also dramatically impaired pathogen growth. Deletion of BcNOP53 blocked infection structure formation and abolished virulence of the pathogen, possibly due to reduced production of reactive oxygen species. Moreover, loss of BcNOP53 impaired pathogen conidiation and stress adaptation, altered conidial and sclerotial morphology, retarded conidium and sclerotium germination as well as reduced the activities of cell-wall degradation-associated enzymes. Sclerotium production was, however, increased. Complementation with the wild-type BcNOP53 allele rescued defects found in the ΔBcnop53 mutant. Our work establishes a systematic elucidation of Nop53 in regulating microbial development and pathogenesis, provides novel insights into ribosomal processes that regulate fungal pathogenesis, and may open up new targets for addressing fungal diseases.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, Non-P.H.S.
Authors
Cao SN, Yuan Y, Qin YH, Zhang MZ, de Figueiredo P, Li GH, Qin QM
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference