Reference: Chang TC, et al. (2018) Evaluating the catalytic importance of a conserved Glu97 residue in triosephosphate isomerase. Biochem Biophys Res Commun 505(2):492-497

Reference Help

Abstract


Investigating enzyme activity is central to our understanding of biological function, and the design of biocatalysts continues to find applications in synthesis. While a role for active site residues can be proposed based on structure and mechanism, our understanding of the catalytic importance for residues surrounding the active site is less well understood. In triosephosphate isomerase (TIM), Glu97 is situated adjacent to the active site and is found in essentially all sequences. Prior studies reported mutation of Glu97 to Asp and Gln in TIM from Plasmodium falciparum (PfTIM) led to a 100- and 4000-fold decrease in activity, respectively, while the E97D mutation in TIM from Gallus gallus (cTIM) had no effect on activity. To investigate further the question of how mutations in essentially superimposable structures give different effects, we mutated E97 in TIM from Trypanosoma brucei brucei (TbbTIM), Saccharomyces cerevisiae (yTIM), and human (hTIM). The E97D, E97A, and E97Q mutations led to a ∼three-tenfold decrease in activity, a modest effect compared to the 102-103-fold effect in PfTIM. CD and fluorescence studies showed the overall structures for the mutants were essentially unchanged. Structural analysis shows that several residues surrounding E97 differ between PfTIM and TIM from the other organisms, and rearrangements or mispositioning of residues in PfTIM may lead to the different rate effects. The results illustrate the interplay of active site and surrounding residues in affecting catalysis and highlight that understanding of the role of residues surrounding the active site may aid in the incorporation of favorable or avoidance of unfavorable interactions when designing enzymes.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Chang TC, Park JH, Colquhoun AN, Khoury CB, Seangmany NA, Schwans JP
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference