Reference: Zou S, et al. (2021) Repetitive δ-integration of a cellulase-encoding gene into the chromosome of an industrial Angel Yeast-derived strain by URA3 recycling. Biotechnol Appl Biochem 68(5):953-963

Reference Help

Abstract


Genetic modification of industrial yeast strains often faces more difficulties than that of laboratory strains. Thus, new approaches are still required. In this research, the Angel Yeast-derived haploid strain Kα was genetically modified by multiple rounds of δ-integration, which was achieved via URA3 recycling. Three δ-integrative plasmids, pGδRU, pGδRU-BGL, and pGδRU-EG, were first constructed with two 167 bp δ sequences and a repeat-URA3-repeat fragment. Then, the δ-integrative strains containing the bgl1 or egl2 gene were successfully obtained by one-time transformation of the linearized pGδRU-BGL or pGδRU-EG fragment, respectively. Their counterparts in which the URA3 gene was looped out were also easily isolated by selection for growth on 5´-fluoroorotic acid plates, although the ratio of colonies lacking URA3 to the total number of colonies decreased with increasing copy number of the corresponding integrated cellulase-encoding gene. Similar results were observed during the second round of δ-integration, in which the δ-integration strain Kα(δ::bgl1-repeat) obtained from the first round was transformed with a linearized pGδRU-EG fragment. After 10 rounds of cell growth and transfer to fresh medium, the doubling times and enzyme activities of Kα(δ::bgl1-repeat), Kα(δ::egl2-repeat), and Kα(δ::bgl1-repeat)(δ::egl2-repeat) showed no significant change and were stable. Further, their maximum ethanol concentrations during simultaneous saccharification and fermentation of pretreated corncob over a 7-day period were 46.35, 33.13, and 51.77 g/L, respectively, which were all substantially higher than the parent Kα strain. Thus, repetitive δ-integration with URA3 recycling can be a feasible and valuable method for genetic engineering of Angel Yeast. These results also provide clues about some important issues related to δ-integration, such as the structural stability of δ-integrated genes and the effects of individual integration-site locations on gene expression. Further be elucidation of these issues should help to fully realize the potential of δ-integration-based methods in industrial yeast breeding.

Reference Type
Journal Article
Authors
Zou S, Sun S, Zhang X, Li J, Guo J, Hong J, Ma Y, Zhang M
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference