Reference: Batista JM, et al. (2023) Evaluation of amino acid profile by targeted metabolomics in the eukaryotic model under exposure of benzo[a]pyrene as the exclusive stressor. Talanta 265:124859

Reference Help

Abstract


Amino acids (AAs) are a class of important metabolites in metabolomics methodology that investigates metabolite changes in a cell, tissue, or organism for early diagnosis of diseases. Benzo[a]pyrene (BaP) is considered a priority contaminant by different environmental control agencies because it is a proven carcinogenic compound for humans. Therefore, it is important to evaluate the BaP interference in the metabolism of amino acids. In this work, a new amino acid extraction procedure (derivatized with propyl chloroformate/propanol) using functionalized magnetic carbon nanotubes was developed and optimized. A hybrid nanotube was used followed by desorption without heating, and excellent extraction of analytes was obtained. After exposure of Saccharomyces cerevisiae, the BaP concentration of 25.0 μmol L-1 caused changes in cell viability, indicating metabolic changes. A fast and efficient GC/MS method using a Phenomenex ZB-AAA column was optimized, enabling the determination of 16 AAs in yeasts exposed or not to BaP. A comparison of AA concentrations obtained in the two experimental groups showed that glycine (Gly), serine (Ser), phenylalanine (Phe), proline (Pro), asparagine (Asn), aspartic acid (Asp), glutamic acid (Glu), tyrosine (Tyr), and leucine (Leu) statistically differentiated, after subsequent application of ANOVA with Bonferroni post-hoc test, with a confidence level of 95%. This amino acid pathway analysis confirmed previous studies that revealed the potential of these AAs as toxicity biomarker candidates.

Reference Type
Journal Article
Authors
Batista JM, Neves MJ, Menezes HC, Cardeal ZL
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference