Reference: Piper PW, et al. (1986) Transcription of the phosphoglycerate kinase gene of Saccharomyces cerevisiae increases when fermentative cultures are stressed by heat-shock. Eur J Biochem 161(3):525-31

Reference Help

Abstract


The single gene for phosphoglycerate kinase (PGK) in the haploid genome of Saccharomyces cerevisiae is expressed to a very high level in cultures fermenting glucose. Despite this it responds to heat-shock. When S. cerevisiae growing exponentially on glucose media was shifted from 25 degrees C to 38 degrees C transient increases of 6-7-fold in cellular PGK mRNA were observed. This elevation in PGK mRNA still occurred in the presence of the protein-synthesis inhibitor cycloheximide, but was not observed in cells bearing the rna1.1 mutation. From the kinetics of continuous labelling of PGK mRNA, relative to the labelling of other RNAs in the same cultures whose levels do not alter with heat-shock, it was shown that the elevation in PGK mRNA in response to temperature upshift reflects primarily an increased synthesis of this mRNA and not an alteration of its half-life. PGK mRNA synthesis is therefore one target of a response mechanism to thermal stress. Synthesis of PGK enzyme in glucose-grown cultures is efficient after mild (25 degrees C to 38 degrees C) or severe (25 degrees C to 42 degrees C) heat-shocks. Following the severe shock, the synthesis of most proteins is abruptly terminated, but synthesis of PGK and a few other glycolytic enzymes continues at levels comparable to the levels of synthesis of most of those proteins dramatically induced by heat (heat-shock proteins). Cells that overproduce PGK due to the presence of multiple copies of the PGK gene on a high-copy-number plasmid continue their overproduction of this enzyme during severe thermal stress. Therefore PGK mRNA is both elevated in level in response to heat-shock and translated efficiently at supra-optimal temperatures.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Piper PW, Curran B, Davies MW, Lockheart A, Reid G
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference