Reference: Timmerman J, et al. (1996) 1H, 15N resonance assignment and three-dimensional structure of CYP1 (HAP1) DNA-binding domain. J Mol Biol 259(4):792-804

Reference Help

Abstract


CYP1(HAP1) is a transcriptional activator involved in the aerobic metabolism of the yeast Saccharomyces cerevisiae. The amino acid sequence of its DNA-binding domain suggests that it belongs to the "zinc cluster" class. This region is indeed characterized by a pattern known to form a bimetal thiolate cluster where two zinc ions are coordinated by six cysteine residues. Structures of two such domains, those from GAL4 and PPR1, have been solved as complexes with DNA. These domains consist of the zinc cluster connected to a dimerization helix by a linker peptide. They recognize, as a dimer, an inverted repeat of a CGG motif that is separated by a specific number of bases. Interestingly, the specificity of that interaction seems not to be due to the interaction between the cluster region and the DNA but rather to a fine tune between the structure of the linker peptide and the number of base-pairs separating the two CGGs. However, the CYP1 target sites fail to display such a consensus sequence. One of the two CGG sites is poorly conserved and some experiments suggest a direct rather than an inverted repeat. Using 1H, 15N and 113Cd NMR spectroscopy, we have undertaken the analysis of the structural properties of the CYP1(56-126) fragment that consists of the zinc-cluster region, the linker peptide and a part of the dimerization helix. We have demonstrated that the six cysteine residues of the peptide chelate two cadmium ions as in GAL4 and PPR1. Fifteen structures of the zinc-cluster region (residues 60 to 100) were calculated, the linker peptide and the dimerization helix being unstructured under the conditions of our study. This region possesses the same overall fold as in GAL4 and PPR1, and most of the side-chains involved in the interaction with DNA are structurally conserved. This suggests that the CYP1 zinc-cluster region recognizes a CGG triplet in the same way as GAL4 and PPR1. In this case, the particular properties of CYP1 seem to be due to the structure of the linker peptide and/or of the dimerization helix.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Timmerman J, Vuidepot AL, Bontems F, Lallemand JY, Gervais M, Shechter E, Guiard B
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference