Reference: Armstrong JD and Kunz BA (1995) Excision repair and gene orientation modulate the strand specificity of UV mutagenesis in a plasmid-borne yeast tRNA gene. Environ Mol Mutagen 25(1):12-22

Reference Help

Abstract


Ultraviolet (UV) mutagenesis in a plasmid-borne Saccharomyces cerevisiae tRNA gene (SUP4-o) occurs preferentially at sites where the pyrimidine in the base pair is part of a dipyrimidine sequence on the transcribed strand. In this study, we examined whether excision repair, or strand identity with respect to DNA replication, influences this strand bias. The specificity of UV mutagenesis was determined for a wild type (RAD) strain and an isogenic excision repair-deficient (rad1) derivative, each carrying SUP4-o on the vector YCpMP2, or another vector (YCpJA1) that differed only in the orientation of SUP4-o with respect to a unique origin of replication. Most (> or = 90%) of the SUP4-o mutations induced by UV in these strains were single base pair substitutions, predominantly (> 87%) transitions. The rad1 defect and inversion of SUP4-o in the RAD strain eliminated the strand preference, whereas inversion of SUP4-o in the rad1 strain caused it to reappear. Both conditions also altered the distribution of frequently mutated sites and the relative fraction of transitions at TT sequences. These results suggest that excision repair and gene orientation can be important determinants for the strand and site specificities of UV mutagenesis in SUP4-o on YCpMP2 and YCpJA1. We consider several possible explanations for our observations, including potential roles for transcription by RNA polymerase II, sequence context effects on the efficiency of excision repair, and inherent differences in strand mutability or translesion synthesis by the leading and lagging strand DNA replication complexes.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Armstrong JD, Kunz BA
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference