Reference: Lee M and Struhl K (1995) Mutations on the DNA-binding surface of TATA-binding protein can specifically impair the response to acidic activators in vivo. Mol Cell Biol 15(10):5461-9

Reference Help

Abstract


The TATA-binding protein (TBP) contains a concave surface that interacts specifically with TATA promoter elements and a convex surface that mediates protein-protein interactions with general and gene-specific transcription factors. Biochemical experiments suggest that interactions between activator proteins and TBP are important in stimulating transcription by the RNA polymerase II machinery. To gain insight into the role of TBP in mediating transcriptional activation in vivo, we implemented a genetic strategy in Saccharomyces cerevisiae that involved the use of a TBP derivative with altered specificity for TATA elements. By genetically screening a set of TBP mutant libraries that were biased to the convex surface that mediates protein-protein interactions, we identified TBP derivatives that are impaired in the response to three acidic activators (Gcn4, Gal4, and Ace1) but appear normal for constitutive polymerase II transcription. A genetic complementation assay indicates that the activation-defective phenotypes reflect specific functional properties of the TBP derivatives rather than an indirect effect on transcription. Surprisingly, three of the four activation-defective mutants affect residues that directly contact DNA. Moreover, all four mutants are defective for TATA element binding, but they interact normally with an acidic activation domain and TFIIB. In addition, we show that a subset of TBP derivatives with mutations on the DNA-binding surface of TBP are also compromised in their responses to acidic activators in vivo. These observations suggest that interactions at the TBP-TATA element interface can specifically affect the response to acidic activator proteins in vivo.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Lee M, Struhl K
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference