Reference: Blank A, et al. (1994) DNA polymerase delta is required for base excision repair of DNA methylation damage in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 91(19):9047-51

Reference Help

Abstract


We present evidence that DNA polymerase delta of Saccharomyces cerevisiae, an enzyme that is essential for viability and chromosomal replication, is also required for base excision repair of exogenous DNA methylation damage. The large catalytic subunit of DNA polymerase delta is encoded by the CDC2(POL3) gene. We find that the mutant allele cdc2-2 confers sensitivity to killing by methyl methanesulfonate (MMS) but allows wild-type levels of UV survival. MMS survival of haploid cdc2-2 strains is lower than wild type at the permissive growth temperature of 20 degrees C. Survival is further decreased relative to wild type by treatment with MMS at 36 degrees C, a nonpermissive temperature for growth of mutant cells. A second DNA polymerase delta allele, cdc2-1, also confers a temperature-sensitive defect in MMS survival while allowing nearly wild-type levels of UV survival. These observations provide an in vivo genetic demonstration that a specific eukaryotic DNA polymerase is required for survival of exogenous methylation damage. MMS sensitivity of a cdc2-2 mutant at 20 degrees C is complemented by expression of mammalian DNA polymerase beta, an enzyme that fills single-strand gaps in duplex DNA in vitro and whose only known catalytic activity is polymerization of deoxyribonucleotides. We conclude, therefore, that the MMS survival deficit in cdc2-2 cells is caused by failure of mutant DNA polymerase delta to fill single-strand gaps arising in base excision repair of methylation damage. We discuss our results in light of current concepts of the physiologic roles of DNA polymerases delta and epsilon in DNA replication and repair.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Blank A, Kim B, Loeb LA
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference