Reference: Li Z, et al. (1995) Feedback inhibition of the yeast ribosomal protein gene CRY2 is mediated by the nucleotide sequence and secondary structure of CRY2 pre-mRNA. Mol Cell Biol 15(11):6454-64

Reference Help

Abstract


The Saccharomyces cerevisiae CRY1 and CRY2 genes, which encode ribosomal protein rp59, are expressed at a 10:1 ratio in wild-type cells. Deletion or inactivation of CRY1 leads to 5- to 10-fold-increased levels of CRY2 mRNA. Ribosomal protein 59, expressed from either CRY1 or CRY2, represses expression of CRY2 but not CRY1. cis-Acting elements involved in repression of CRY2 were identified by assaying the expression of CRY2-lacZ gene fusions and promoter fusions in CRY1 CRY2 and cry1-delta CRY2 strains. Sequences necessary and sufficient for regulation lie within the transcribed region of CRY2, including the 5' exon and the first 62 nucleotides of the intron. Analysis of CRY2 point mutations corroborates these results and indicates that both the secondary structure and sequence of the regulatory region of CRY2 pre-mRNA are necessary for repression. The regulatory sequence of CRY2 is phylogenetically conserved; a very similar sequence is present in the 5' end of the RP59 gene of the yeast Kluyveromyces lactis. Wild-type cells contain very low levels of both CRY2 pre-mRNA and CRY2 mRNA. Increased levels of CRY2 pre-mRNA are present in mtr mutants, defective in mRNA transport, and in upf1 mutants, defective in degradation of cytoplasmic RNA, suggesting that in wild-type repressed cells, unspliced CRY2 pre-mRNA is degraded in the cytoplasm. Taken together, these results suggest that feedback regulation of CRY2 occurs posttranscriptionally. A model for coupling ribosome assembly and regulation of ribosomal protein gene expression is proposed.

Reference Type
Comparative Study | Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Li Z, Paulovich AG, Woolford JL
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference