Reference: Sirum-Connolly K, et al. (1995) Implications of a functional large ribosomal RNA with only three modified nucleotides. Biochimie 77(1-2):30-9

Reference Help

Abstract


The sequence and structure of the peptidyl transferase region of large subunit ribosomal RNA is highly conserved and specific modified nucleotides could be important structural or functional elements in the catalytic center responsible for peptide bond formation. In fact, it has not been possible to reconstitute active E coli 50S subunits from in vitro transcripts of 23S rRNA and total 50S proteins. It is significant therefore, that the PET56 gene of yeast encodes an essential ribose methyltransferase that specifically modifies a universally conserved nucleotide, G2270, in the peptidyl transferase center of the mitochondrial large ribosomal RNA (21S). Since the loss of this modification in yeast mitochondrial 21S rRNA severely affects the assembly of 54S subunits, it is likely that the analogous 2'-O-methylguanosine at position 2251 (Gm2251) in E coli 23S rRNA is also required for the assembly of 50S subunits. Gm could be a critical structural determinant for the correct folding of the rRNA, the binding of one or more ribosomal proteins, or the interaction of the rRNA with tRNA. Previous work has shown that the mitochondrial large rRNAs are minimally modified relative to the E coli and eukaryotic cytoplasmic rRNAs. By direct chemical analysis using combined high performance liquid chromatography-mass spectrometry, the modification status of the yeast mitochondrial rRNAs was reexamined, revealing the presence of Gm, Um and pseudouridine (psi) in 21S rRNA. The Um was mapped to nucleotide 2791, which corresponds to the ribose methylated and universally conserved U2552 in E coli 23S rRNA, and the psi has been recently mapped to position 2819, which corresponds to psi 2580 in E coli 23S rRNA. The retention of Um and psi nucleotides in the peptidyl transferase center of the otherwise minimally modified mitochondrial rRNAs suggests that these modifications, like Gm2270, might be essential for ribosome assembly or function or both.

Reference Type
Journal Article | Research Support, U.S. Gov't, Non-P.H.S. | Research Support, U.S. Gov't, P.H.S.
Authors
Sirum-Connolly K, Peltier JM, Crain PF, McCloskey JA, Mason TL
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference