Reference: Tiede A, et al. (1998) Human and mouse Gpi1p homologues restore glycosylphosphatidylinositol membrane anchor biosynthesis in yeast mutants. Biochem J 334 ( Pt 3)(Pt 3):609-16

Reference Help

Abstract


Glycosylphosphatidylinositol (GPI) represents an important anchoring molecule for cell surface proteins. The first step in its synthesis is the transfer of N-acetylglucosamine (GlcNAc) from UDP to phosphatidylinositol (PI). The products of three mammalian genes, PIG-A, PIG-C and PIG-H, have previously been shown to be involved in the putative enzymic complex. Here we report the cloning of human and mouse cDNAs encoding a fourth participant in the GlcNAc transfer reaction which are homologues of the Saccharomyces cerevisiae and Schizosaccharomyces pombe Gpi1 proteins. To provide evidence for their function, these proteins were expressed in GPI1-disrupted yeast strains. In Sacch. cerevisiae, where GPI1 disruption results in a temperature-sensitive phenotype and abolishes in vitro GlcNAc-PI synthesis, restoration of growth could be demonstrated in a temperature-dependent manner. In addition, in vitro GlcNAc-PI synthetic activity was again detectable. In Schiz. pombe, gpi1+ disruption is lethal. Using random spore analysis, we were able to show that the mammalian GPI1 homologues can rescue haploids harbouring the lethal gpi1+::his7+ allele. Our data demonstrate that the genes identified are indeed involved in the first step of GPI biosynthesis, and allow conclusions about a specific function for Gpi1p in stabilizing the enzymic complex. The finding that, despite a low degree of identity, the mammalian Gpi1 proteins are able to participate in the yeast GlcNAc-PI synthetic machinery as heterologous components further demonstrates that GPI biosynthesis has been highly conserved throughout evolution.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Tiede A, Schubert J, Nischan C, Jensen I, Westfall B, Taron CH, Orlean P, Schmidt RE
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference