Reference: Knoll LJ, et al. (1995) Complementation of Saccharomyces cerevisiae strains containing fatty acid activation gene (FAA) deletions with a mammalian acyl-CoA synthetase. J Biol Chem 270(18):10861-7

Reference Help

Abstract


Four unlinked fatty acid activation (FAA) genes encoding acyl-CoA synthetases have been identified in Saccharomyces cerevisiae and characterized by noting the phenotypes of isogenic strains containing all possible combinations of faa null alleles. None of these genes is required for vegetative growth when acyl-CoA production by the fatty acid synthetase (Fas) complex is active. When Fas is inhibited by cerulenin, exponentially growing cells are not viable on media containing a fermentable carbon source unless supplemented with fatty acids such as myristate, palmitate, or oleate. The functionally interchangeable FAA1 and FAA4 genes are responsible for activation of these imported fatty acids. Analysis of lysates prepared from isogenic FAA1FAA4 and faa1 delta faa4 delta strains indicated that Faa1p and Faa4p together account for 99% of total cellular myristoyl-CoA and palmitoyl-CoA synthetase activities. Genetic complementation studies revealed that rat liver acyl-CoA synthetase (RLACS) rescues the viability of faa1 delta faa4 delta cells in media containing a fermentable carbon source, myristate or palmitate, plus cerulenin. Rescue is greater at 37 degrees C compared with 24 degrees C, paralleling the temperature-dependent changes in RLACS activity in vitro as well as the enzyme's ability to direct incorporation of tritiated myristate and palmitate into cellular phospholipids in vivo. Complementation by RLACS is blocked by treatment of cells with triacsin C (1-hydroxy-3-(E,E,E,2',4',7'- undecatrienylidine)triazene). Even though Faa1p, Faa4p, and RLACS are all able to activate imported myristate and palmitate in S. cerevisiae, the sensitivity of Faa4p and RLACS, but not Faa1p, to inhibition by triacsin C suggests that the rat liver enzyme is functionally more analogous to Faa4p than to Faa1p. Finally, an assessment of myristate and palmitate import into FAA1FAA4 and faa1 delta faa4 delta strains, with or without episomes that direct overexpression of Faa1p, Faa4p or RLACS, indicated that fatty acid uptake is not coupled to activation in S. cerevisiae.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Knoll LJ, Johnson DR, Gordon JI
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference