Reference: Sentürker S, et al. (1998) Substrate specificities of the ntg1 and ntg2 proteins of Saccharomyces cerevisiae for oxidized DNA bases are not identical. Nucleic Acids Res 26(23):5270-6

Reference Help

Abstract


Two genes of Saccharomyces cerevisiae, NTG1 and NTG2, encode proteins with a significant sequence homology to the endonuclease III of Escherichia coli. The Ntg1 and Ntg2 proteins were overexpressed in E.coli and purified to apparent homogeneity. The substrate specificity of Ntg1 and Ntg2 proteins for modified bases in oxidatively damaged DNA was investigated using gas chromatography/isotope-dilution mass spectrometry. The substrate used was calf-thymus DNA exposed to gamma-radiation in N2O-saturated aqueous solution. The results reveal excision by Ntg1 and Ntg2 proteins of six pyrimidine-derived lesions, 5-hydroxy-6-hydrothymine, 5-hydroxy-6-hydrouracil, 5-hydroxy-5-methylhydantoin, 5-hydroxyuracil, 5-hydroxycytosine and thymine glycol, and two purine-derived lesions, 2,6-diamino-4-hydroxy-5-formamidopyrimidine and 4,6-diamino-5-formamidopyrimidine from gamma-irradiated DNA. In contrast, Ntg1 and Ntg2 proteins do not release 8-hydroxyguanine or 8-hydroxyadenine from gamma-irradiated DNA. The Ntg1 and Ntg2 proteins also release 2, 6-diamino-4-hydroxy-5-N-methylformamido-pyrimidine from damaged poly(dG-dC).poly(dG-dC). Excision was measured as a function of enzyme concentration and time. Furthermore, kinetic parameters were determined for each lesion. The results show that kinetic constants varied among the different lesions for the same enzyme. We also investigated the capacity of the Ntg1 and Ntg2 proteins to cleave 34mer DNA duplexes containing a single 8-OH-Gua residue mispaired with each of the four DNA bases. The results show that the Ntg1 protein preferentially cleaves a DNA duplex containing 8-OH-Gua mispaired with a guanine. Moreover, the Ntg1 protein releases free 8-OH-Gua from 8-OH-Gua/Gua duplex but not from duplexes containing 8-OH-Gua mispaired with adenine, thymine or cytosine. In contrast, the Ntg2 protein does not incise duplexes containing 8-OH-Gua mispaired with any of the four DNA bases. These results demonstrate that substrate specificities of the Ntg1 and Ntg2 proteins are similar but not identical and clearly different from that of the endonuclease III of E.coli and its homologues in Schizosaccharomyces pombe or human cells.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Sentürker S, Auffret van der Kemp P, You HJ, Doetsch PW, Dizdaroglu M, Boiteux S
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference