Reference: Johnson ES, et al. (1995) A proteolytic pathway that recognizes ubiquitin as a degradation signal. J Biol Chem 270(29):17442-56

Reference Help

Abstract


Previous work has shown that a fusion protein bearing a "nonremovable" N-terminal ubiquitin (Ub) moiety is short-lived in vivo, the fusion's Ub functioning as a degradation signal. The proteolytic system involved, termed the UFD pathway (Ub fusion degradation), was dissected in the yeast Saccharomyces cerevisiae by analyzing mutations that perturb the pathway. Two of the five genes thus identified, UFD1 and UFD5, function at post-ubiquitination steps in the UFD pathway. UFD3 plays a role in controlling the concentration of Ub in a cell: ufd3 mutants have greatly reduced levels of free Ub, and the degradation of Ub fusions in these mutants can be restored by overexpressing Ub. UFD2 and UFD4 appear to influence the formation and topology of a multi-Ub chain linked to the fusion's Ub moiety. UFD1, UFD2, and UFD4 encode previously undescribed proteins of 40, 110, and 170 kDa, respectively. The sequence of the last approximately 280 residues of Ufd4p is similar to that of E6AP, a human protein that binds to both the E6 protein of oncogenic papilloma viruses and the tumor suppressor protein p53, whose Ub-dependent degradation involves E6AP. UFD5 is identical to the previously identified SON1, isolated as an extragenic suppressor of sec63 alleles that impair the transport of proteins into the nucleus. UFD5 is essential for activity of both the UFD and N-end rule pathways (the latter system degrades proteins that bear certain N-terminal residues). We also show that a Lys --> Arg conversion at either position 29 or position 48 in the fusion's Ub moiety greatly reduces ubiquitination and degradation of Ub fusions to beta-galactosidase. By contrast, the ubiquitination and degradation of Ub fusions to dihydrofolate reductase are inhibited by the UbR29 but not by the UbR48 moiety. ufd4 mutants are unable to ubiquitinate the fusion's Ub moiety at Lys29, whereas ufd2 mutants are impaired in the ubiquitination at Lys48. These and related findings suggest that Ub-Ub isopeptide bonds in substrate-linked multi-Ub chains involve not only the previously identified Lys48 but also Lys29 of Ub, and that structurally different multi-Ub chains have distinct functions in Ub-dependent protein degradation.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Johnson ES, Ma PC, Ota IM, Varshavsky A
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference