Reference: Schmidt MC, et al. (1989) Sp1 activates transcription without enhancing DNA-binding activity of the TATA box factor. Mol Cell Biol 9(8):3299-307

Reference Help

Abstract


We have studied the interactions of the Sp1 and IID transcription factors with a simple RNA polymerase II promoter. The adenovirus E1B core promoter consists essentially of a GC box and a TATA box, binding sites for the Sp1 and IID transcription factors, respectively. The E1B promoter is accurately transcribed in vitro using a mammalian transcription system. Sp1 activates E1B transcription in vitro in reactions using IID factor isolated from either human or yeast cells. In DNase I footprinting studies, Sp1 bound rapidly to its recognition sequence even at 0 degrees C (t1/2 less than 1 min). In contrast, yeast IID bound more slowly (t1/2 approximately 6 min at 25 degrees C) and required thermal energy for stable binding to the TATA box sequence. Dissociation rates were measured by the addition of specific oligonucleotide competitors to preformed DNA-protein complexes. Sp1 dissociates rapidly (t1/2 less than 1 min) at 25 degrees C, while yeast IID dissociates with an estimated t1/2 of 1 h at 25 degrees C. Sp1 and yeast IID bound to the E1B promoter simultaneously but independently. The rates of binding and dissociation of these factors were not significantly affected by the presence of the other factor. Bound Sp1 factor did not alter or enhance the yeast IID footprint. Oligonucleotide challenge of in vitro transcription reactions indicated that Sp1 also did not enhance the binding of the human IID factor to the E1B promoter. Thus the Sp1 factor activates transcription of the E1B gene by a mechanism that does not enhance the DNA-binding activity of the IID factor. Sp1 factor activates E1B transcription by 5- to 10-fold in vitro. Under these in vitro transcription conditions, transcripts due to reinitiation from an individual promoter complex contribute only a small portion of the total yield of E1B transcripts. Thus Sp1 cannot activate transcription by increasing the rate of initiation events per complex. Instead it appears that Sp1 acts by increasing the number of productive transcription complexes formed in vitro.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Schmidt MC, Zhou Q, Berk AJ
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference