Reference: Wittekind M, et al. (1990) Conditional expression of RPA190, the gene encoding the largest subunit of yeast RNA polymerase I: effects of decreased rRNA synthesis on ribosomal protein synthesis. Mol Cell Biol 10(5):2049-59

Reference Help

Abstract


The synthesis of ribosomal proteins (r proteins) under the conditions of greatly reduced RNA synthesis were studied by using a strain of the yeast Saccharomyces cerevisiae in which the production of the largest subunit (RPA190) of RNA polymerase I was controlled by the galactose promoter. Although growth on galactose medium was normal, the strain was unable to sustain growth when shifted to glucose medium. This growth defect was shown to be due to a preferential decrease in RNA synthesis caused by deprivation of RNA polymerase I. Under these conditions, the accumulation of r proteins decreased to match the rRNA synthesis rate. When proteins were pulse-labeled for short periods, no or only a weak decrease was observed in the differential synthesis rate of several r proteins (L5, L39, L29 and/or L28, L27 and/or S21) relative to those of control cells synthesizing RPA190 from the normal promoter. Degradation of these r proteins synthesized in excess was observed during subsequent chase periods. Analysis of the amounts of mRNAs for L3 and L29 and their locations in polysomes also suggested that the synthesis of these proteins relative to other cellular proteins were comparable to those observed in control cells. However, Northern analysis of several r-protein mRNAs revealed that the unspliced precursor mRNA for r-protein L32 accumulated when rRNA synthesis rates were decreased. This result supports the feedback regulation model in which excess L32 protein inhibits the splicing of its own precursor mRNA, as proposed by previous workers (M. D. Dabeva, M. A. Post-Beittenmiller, and J. R. Warner, Proc. Natl. Acad. Sci. USA 83:5854-5857, 1986).

Reference Type
Journal Article | Research Support, U.S. Gov't, Non-P.H.S. | Research Support, U.S. Gov't, P.H.S.
Authors
Wittekind M, Kolb JM, Dodd J, Yamagishi M, Mémet S, Buhler JM, Nomura M
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference