Reference: Blaiseau PL, et al. (1997) Met31p and Met32p, two related zinc finger proteins, are involved in transcriptional regulation of yeast sulfur amino acid metabolism. Mol Cell Biol 17(7):3640-8

Reference Help

Abstract


Sulfur amino acid metabolism in Saccharomyces cerevisiae is regulated by the level of intracellular S-adenosylmethionine (AdoMet). Two cis-acting elements have been previously identified within the 5' upstream regions of the structural genes of the sulfur network. The first contains the CACGTG motif and is the target of the transcription activation complex Cbflp-Met4p-Met28p. We report here the identification of two new factors, Met31p and Met32p, that recognize the second cis-acting element. Met31p was isolated through the use of the one-hybrid method, while Met32p was identified during the analysis of the yeast methionine transport system. Met31p and Met32p are highly related zinc finger-containing proteins. Both LexA-Met31p and LexA-Met32p fusion proteins activate the transcription of a LexAop-containing promoter in a Met4p-dependent manner. Northern blot analyses of cells that do not express either Met31p and/or Met32p suggest that the function of the two proteins during the transcriptional regulation of the sulfur network varies from one gene to the other. While the expression of both the MET3 and MET14 genes was shown to strictly depend upon the presence of either Met31p or Met32p, the transcription of the MET25 gene is constitutive in cells lacking both Met31p and Met32p. These results therefore emphasise the diversity of the mechanisms allowing regulation of the expression of the methionine biosynthetic genes.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Blaiseau PL, Isnard AD, Surdin-Kerjan Y, Thomas D
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference