Reference: Eriksson S, et al. (1995) Efficient incorporation of anti-HIV deoxynucleotides by recombinant yeast mitochondrial DNA polymerase. J Biol Chem 270(32):18929-34

Reference Help

Abstract


Saccharomyces cerevisiae mtDNA polymerase, isolated as a single 135-kDa recombinant polypeptide, showed high processivity and a capacity of use poly(dA).oligo(dT), poly(rA).oligo(dT), or primed bacteriophage M13 DNA as a template. In a primer extension assay, the enzyme exhibited an intrinsic 3'-5'-exonuclease activity. By optimizing the polymerization reaction conditions, apparent Km and Vmax values could be determined for the incorporation of dTTP, 2'-3'-dideoxy-TTP (ddTTP), 3'-azido-TTP (AZTTP), 3'-fluoro-TTP, dCTP, 2'-3'-dideoxy-CTP, and didehydro(d4)CTP. The yeast mtDNA polymerase used ddTTP, 3'-fluoro-TTP, and ddCTP almost as efficiently as natural deoxynucleoside trisphosphates. Both 3'AZTTP and d4CTP were each significantly less efficient as substrates. Overall, the kinetic data with mtDNA polymerase were very similar to those of the recombinant human immunodeficiency virus reverse transcriptase control. Terminally incorporated AZTTP or ddTTP was not removed by the 3'-5' exonuclease activity of mtDNA polymerase. This may explain the inhibition of mtDNA replication observed in anti-human immunodeficiency virus treatment with dideoxynucleoside analogs for their effects of mtDNA polymerase could be of value in future rational drug design.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Eriksson S, Xu B, Clayton DA
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference