Reference: Rossi G, et al. (1997) Analysis of a yeast SNARE complex reveals remarkable similarity to the neuronal SNARE complex and a novel function for the C terminus of the SNAP-25 homolog, Sec9. J Biol Chem 272(26):16610-7

Reference Help

Abstract


SNARE proteins represent a family of related proteins that are thought to have a central role in vesicle targeting and fusion in all eukaryotic cells. The binding properties of the neuronal proteins synaptobrevin 1 (VAMP1), syntaxin 1, SNAP-25, and soluble N-ethylmaleimide-sensitive factor attachment protein (alpha-SNAP), have been extensively studied. We report here the first biochemical characterization of a nonneuronal SNARE complex using recombinant forms of the yeast exocytic SNARE proteins Snc1, Sso1, and Sec9 and the yeast alpha-SNAP homolog, Sec17. Despite the low level of sequence identity, the association properties of the yeast and neuronal complexes are remarkably similar. The most striking difference we have found between the yeast and neuronal proteins is that individually neither of the target membrane SNAREs (t-SNAREs), Sso1 nor Sec9, show any detectable binding to the synaptobrevin homolog, Snc1. However, as a hetero-oligomeric complex, Sec9 and Sso1 show strong binding to Snc1. The clear dependence on the Sso1-Sec9 complex for t-SNARE function suggests that regulating the formation of this complex may be a key step in determining the site of vesicle fusion. In addition, we have used this in vitro assay to examine the biochemical effects of several mutations in Sec9 that result in pronounced growth defects in vivo. As expected, a temperature-sensitive mutation in the region most highly conserved between Sec9 and SNAP-25 is severely diminished in its ability to bind Sso1 and Snc1 in vitro. In contrast, a temperature-sensitive mutation near the C terminus of Sec9 shows no defect in SNARE binding in vitro. Similarly, a deletion of the C-terminal 17 residues, which is lethal in vivo, also binds Sso1 and Snc1 normally in vitro. Interestingly, we find that these same two C-terminal mutants, but not mutants that show SNARE assembly defects in vitro, act as potent dominant negative alleles when expressed behind a strong regulated promoter. Taken together these results suggest that the C-terminal domain of Sec9 is specifically required for a novel interaction that is required at a step following SNARE assembly.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Rossi G, Salminen A, Rice LM, Brünger AT, Brennwald P
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference