Reference: Buczynski G, et al. (1997) Evidence for a recycling role for Rab7 in regulating a late step in endocytosis and in retention of lysosomal enzymes in Dictyostelium discoideum. Mol Biol Cell 8(7):1343-60

Reference Help

Abstract


The mammalian small molecular weight GTPase Rab7 (Ypt7 in yeast) has been implicated in regulating membrane traffic at postinternalization steps along the endosomal pathway. A cDNA encoding a protein 85% identical at the amino acid level to mammalian Rab7 has been cloned from Dictyostelium discoideum. Subcellular fractionation and immunofluorescence microscopy indicated that Rab7 was enriched in lysosomes, postlysosomes, and maturing phagosomes. Cell lines were generated that overexposed Rab7 wild-type (WT), Rab7 Q67L (constitutively active form), and Rab7 T22N (dominant negative form) proteins. The Rab7 T22N cell line internalized fluid phase markers and latex beads (phagocytosis) at one-third the rate of control cells, whereas Rab7 WT and Rab7 Q67L cell lines were normal in uptake rates but exocytosed fluid phase faster than control cells. In contrast, fluid phase markers resided in acidic compartments for longer periods of time and were more slowly exocytosed from Rab7 T22N cells as compared with control cells. Light microscopy indicated that Rab7-expressing cell lines contained morphologically altered endosomal compartments. Compared with control cells, Rab7 WT- and Rab7 Q67L-expressing cells contained a reduced number of vesicles, the size of postlysosomes (> 2.5 microns) and an increased number of smaller vesicles, many of which were nonacidic; in control cells, > 90% of the smaller vesicles were acidic. In contrast, Rab7 T22N cells contained an increased proportion of large acidic vesicles relative to nonacidic vesicles. Radiolabel pulse-chase experiments indicated that all of the cell lines processed and targeted lysosomal alpha-mannosidase normally, indicating the lack of a significant role for Rab7 in the targeting pathway; however, retention of mature lysosomal hydrolases was affected in Rab7 WT and Rab7 T22N cell lines. Contrary to the results observed for the fluid phase efflux experiments, Rab7 T22N cells oversecreted alpha-mannosidase, whereas Rab7 WT cells retained this hydrolase as compared with control cells. These data support a model that Rab7 may regulate retrograde transport of lysosomal enzymes and the V-type H(+)-ATPase from postlysosomes to lysosomes coupled with the efficient release of fluid phase from cells.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, Non-P.H.S. | Research Support, U.S. Gov't, P.H.S.
Authors
Buczynski G, Bush J, Zhang L, Rodriguez-Paris J, Cardelli J
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference