Reference: Vlassov VV, et al. (1983) Interaction of tRNAPhe and tRNAVal with aminoacyl-tRNA synthetases. A chemical modification study. Eur J Biochem 132(3)

Reference Help

Abstract


The alkylation by ethylnitrosourea of phosphodiester bonds in tRNAPhe from yeast and in tRNAVal from yeast and from rabbit liver and that by 4-(N-2-chloroethyl-N-methylamino)-benzylamine of N-7 atoms of guanosine residues in yeast tRNAVal have been used to study the interaction of these tRNAs with aminoacyl-tRNA synthetases. The modifications occurring at low yield were carried out on 3' and/or 5' end-labelled tRNAs either free or in the presence of cognate or non-cognate synthetases. After splitting of the tRNAs at the alkylated positions, the position of the modification sites in the tRNA sequences were detected by acrylamide gel electrophoresis. It was found that the synthetases protect against alkylation certain phosphate or guanosine residues in their cognate tRNAs. Non-cognate synthetases failed to protect efficiently specific positions in tRNA against modification. In yeast tRNAPhe the cognate phenylalanyl-tRNA synthetase protects certain phosphates located in all four stems and in the anticodon and extra-loop of the tRNA. Particularly strong protections occur on phosphate 34 in the anticodon loop and on phosphates 23, 27, 28, 41 and 46 in the D and anticodon stems. In yeast tRNAVal complexed with yeast valyl-tRNA synthetase the protected phosphates are essentially located in the corner between the amino-acid-accepting and D stems, in the D loop, anticodon stem and in the variable region of the tRNA. Three guanosine residues, located in the D stem, and another one in the 3' part of the anticodon stem were also found protected by the synthetase. In mammalian tRNAVal, complexed with the cognate but heterologous yeast valyl-tRNA synthetase, the protected phosphates lie in the anticodon stem, in the extra-loop and in the T psi arm. The location of the protected residues in the structure of three tRNAs suggests some common features in the binding of tRNAs to aminoacyl-tRNA synthetases. These results will be discussed in the light of informations on interaction sites obtained by nuclease digestion and ultraviolet cross-linking methods.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Vlassov VV, Kern D, Romby P, Giegé R, Ebel JP
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference