Reference: Kubota H, et al. (2001) Budding yeast GCN1 binds the GI domain to activate the eIF2alpha kinase GCN2. J Biol Chem 276(20):17591-6

Reference Help

Abstract


When starved for a single amino acid, the budding yeast Saccharomyces cerevisiae activates the eukaryotic initiation factor 2alpha (eIF2alpha) kinase GCN2 in a GCN1-dependent manner. Phosphorylated eIF2alpha inhibits general translation but selectively derepresses the synthesis of the transcription factor GCN4, which leads to coordinated induction of genes involved in biosynthesis of various amino acids, a phenomenon called general control response. We recently demonstrated that this response requires binding of GCN1 to the GI domain occurring at the N terminus of GCN2 (Kubota, H., Sakaki, Y., and Ito, T. (2000) J. Biol. Chem. 275, 20243-20246). Here we provide the first evidence for the involvement of GCN1-GCN2 interaction in activation of GCN2 per se. We identified a C-terminal segment of GCN1 sufficient to bind the GI domain and used a novel dual bait two-hybrid method to identify mutations rendering GCN1 incapable of interacting with GCN2. The yeast bearing such an allele, gcn1-F2291L, fails to display derepression of GCN4 translation and hence general control response, as does a GI domain mutant, gcn2-Y74A, defective in association with GCN1. Furthermore, we demonstrated that phosphorylation of eIF2alpha is impaired in both mutants. Since GCN2 is the sole eIF2alpha kinase in yeast, these findings indicate a critical role of GCN1-GCN2 interaction in activation of the kinase in vivo.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Kubota H, Ota K, Sakaki Y, Ito T
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference