Reference: Saier MH (1999) Eukaryotic transmembrane solute transport systems. Int Rev Cytol 190:61-136

Reference Help

Abstract


A comprehensive classification system for transmembrane molecular transporters has been proposed. This system is based on (i) mode of transport and energy-coupling mechanism, (ii) protein phylogenetic family, (iii) phylogenetic cluster, and (iv) substrate specificity. The proposed "Transport Commission" (TC) system is superficially similar to that implemented decades ago by the Enzyme Commission for enzymes, but it differs from the latter system in that it uses phylogenetic and functional data for classification purposes. Very few families of transporters include members that do not function exclusively in transport. Analyses reported reveal that channels, primary carriers, secondary carriers (uni-, sym-, and antiporters), and group translocators comprise distinct categories of transporters, and that transport mode and energy coupling are relatively immutable characteristics. By contrast, substrate specificity and polarity of transport are often readily mutable. Thus, with very few exceptions, a unified family of transporters includes members that function by a single transport mode and energy-coupling mechanism although a variety of substrates may be transported with either inwardly or outwardly directed polarity. The TC system allows cross-referencing according to substrates transported and protein sequence database accession numbers. Thus, familial assignments of newly sequenced transport proteins are facilitated. In this article I examine families of transporters that are eukaryotic specific. These families include (i) channel proteins, mostly from animals; (ii) facilitators and secondary active transport carriers; (iii) a few ATP-dependent primary active transporters; and (iv) transporters of unknown mode of action or energy-coupling mechanism. None of the several ATP-independent primary active transport energy-coupling mechanisms found in prokaryotes is represented within the eukaryotic-specific families. The analyses reported provide insight into transporter families that may have arisen in eukaryotes after the separation of eukaryotes from archaea and bacteria. On the basis of the reported analyses, it is suggested that the horizontal transfer of genes encoding transport proteins between eukaryotes and members of the other two domains of life occurred very infrequently during evolutionary history.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S. | Review
Authors
Saier MH
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference