Reference: Martinez E, et al. (1997) Folding of the presequence of yeast pAPI into an amphipathic helix determines transport of the protein from the cytosol to the vacuole. J Mol Biol 267(5):1124-38

Reference Help

Abstract


To investigate the role of the 17 residues long presequence (p17) in the transport of the precursor of yeast API (pAPI) from the cytosol to the vacuole we have studied the effects of point mutations upon its conformation and on the process of transport. 1H NMR analysis of p17 indicates that in aqueous solution 26% of the molecules have the 4-12 segment folded into an helix. The hydrophobic environment provided by SDS micelles promotes the folding of 54% of the p17 molecules into a 5-16 amphipathic alpha-helix. Both Schiffer-Edmunson helical wheel analysis of segment 4-12 and residue hydrophobic moments calculated considering all possible side-chain orientations between 80 and 120 degrees, indicate the amphipathic character of the helixes assembled in water and detergent. Charge interactions between the dipole pairs N-Glu2Glu3 and C-Lys12Lys13 are essential for helix stability and condition pAPI transport. Substitution of either Pro2Pro3 or Lys2Lys3 for Glu2Glu3, results in moderate destabilization of the helix, decreases protein targeting to the vacuolar membrane and partly inhibits translocation of the protein to the vacuolar lumen. Replacement of either Pro12Pro13 or Glu12Glu13 for Lys12Lys13, causes a major disruption of the helix, decreases protein targeting and blocks completely the translocation of the protein to the vacuolar lumen. Replacement of Gly7 for Ile7, a substitution which is known to destabilize alpha-helixes in peptides and proteins as a result of the peptide bond to the solvent at Gly residues, produces similar effects as the substitutions for the K12K13 pair. The effects of Gly7 on helix stability and protein transport are partly reversed by introduction of Asp residues at positions 2 and 3 and Ala at position 4. Replacements such as Arg2 for Glu2, or Arg6 for Glu6, which change the net and local charges of the presequence without altering its conformation, have no effect on the protein transport. These results provide direct evidence of the involvement of the presequence in the transport of pAPI from the cytosol to the vacuole. They show that folding of the pAPI presequence is conditioned by the physical/chemical properties of the environment and is critical for targeting the protein to the vacuolar membrane and for its translocation to the vacuolar lumen.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Martinez E, Jimenez MA, Seguí-Real B, Vandekerckhove J, Sandoval IV
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference