Reference: Ohnishi M, et al. (1998) Selective inhibition of Ras interaction with its particular effector by synthetic peptides corresponding to the Ras effector region. J Biol Chem 273(17):10210-5

Reference Help

Abstract


Ras proteins possess multiple downstream effectors of distinct structures. We and others demonstrated that Ha-Ras carrying certain effector region mutations could interact differentially with its effectors, implying that significant differences exist in their Ras recognition mechanisms. Here, by employing the fluorescence polarization method, we measured the activity of effector region synthetic peptides bearing various amino acid substitutions to inhibit association of Ras with the effectors human Raf-1 and Schizosaccharomyces pombe Byr2. The effect of these peptides on association with another effector Saccharomyces cerevisiae adenylyl cyclase was also examined by measuring inhibition of the Ras-dependent adenylyl cyclase activity. The peptide corresponding to the residues 17-44 competitively inhibited Ras association with all the three effectors at the Ki values of 1 approximately 10 microM, and the inhibition was considerably attenuated by the D38A mutation. The peptide with the D38N mutation inhibited association of Ha-Ras with Byr2 but not with the others, whereas that with the P34G mutation inhibited association of Ha-Ras with Raf-1 and Byr2 but not with adenylyl cyclase. Thus, the specificity observed with the whole Ras protein was retained in the effector region peptide. These results suggest that the effector region residues constitute a major determinant for differential recognition of the effector molecules, raising a possibility for selective inhibition of a particular Ras function.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Ohnishi M, Yamawaki-Kataoka Y, Kariya K, Tamada M, Hu CD, Kataoka T
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference