Reference: Giegé R, et al. (1990) Exploring the aminoacylation function of transfer RNA by macromolecular engineering approaches. Involvement of conformational features in the charging process of yeast tRNA(Asp). Biochimie 72(6-7):453-61

Reference Help

Abstract


This report presents the conceptual and methodological framework that presently underlies the experiments designed to decipher the structural features in tRNA important for its aminoacylation by aminoacyl-tRNA synthetases. It emphasizes the importance of conformational features in tRNA for an optimized aminoacylation. This is illustrated by selected examples on yeast tRNA(Asp). Using the phage T7 transcriptional system, a series of tRNA(Asp) variants were created in which conformational elements were modified. It is shown that aspartyl-tRNA synthetase tolerates conformational variability in tRNA(Asp) at the level of the D-loop and variable region, of the tertiary Levitt base-pair 15-48 which can be inverted and in the T-arm in which residue 49 can be excised. However, changing the anticodon region completely abolishes the aspartylation capacity of the variants. Transplanting the phenylalanine identity elements into a different tRNA(Asp) variant presenting conformational characteristics of tRNA(Phe) converts this molecule into a phenylalanine acceptor but is less efficient than wild-type tRNA(Phe). This engineered tRNA completely loses its aspartylation capacity, showing that some aspartic acid and phenylalanine identity determinants overlap. The fact that chimeric tRNA(Asp) molecules with altered anticodon regions lose their aspartylation capacity demonstrates that this region is part of the aspartic acid identity of tRNA(Asp).

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Review
Authors
Giegé R, Florentz C, Garcia A, Grosjean H, Perret V, Puglisi J, Théobald-Dietrich A, Ebel JP
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference