Reference: Wolfson AD, et al. (1999) Mimics of yeast tRNAAsp and their recognition by aspartyl-tRNA synthetase. Biochemistry 38(37):11926-32

Reference Help

Abstract


Assuming that the L-shaped three-dimensional structure of tRNA is an architectural framework allowing the proper presentation of identity nucleotides to aminoacyl-tRNA synthetases implies that altered and/or simplified RNA architectures can fulfill this role and be functional substrates of these enzymes, provided they contain correctly located identity elements. In this work, this paradigm was submitted to new experimental verification. Yeast aspartyl-tRNA synthetase was the model synthetase, and the extent to which the canonical structural framework of cognate tRNAAsp can be altered without losing its ability to be aminoacylated was investigated. Three novel architectures recognized by the synthetase were found. The first resembles that of metazoan mitochondrial tRNASer lacking the D-arm. The second lacks both the D- and T-arms, and the 5'-strand of the amino acid acceptor arm. The third structure is a construct in which the acceptor and anticodon helices are joined by two connectors. Aspartylation specificity of these RNAs is verified by the loss of aminoacylation activity upon mutation of the putative identity residues. Kinetic data indicate that the first two architectures are mimics of the whole tRNAAsp molecule, while the third one behaves as an aspartate minihelix mimic. Results confirm the primordial role of the discriminator nucleotide G73 in aspartylation and demonstrate that neither a helical structure in the acceptor domain nor the presence of a D- or T-arm is mandatory for specific aspartylation, but that activity relies on the presence of the cognate aspartate GUC sequence in the anticodon loop.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Wolfson AD, Khvorova AM, Sauter C, Florentz C, Giegé R
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference