Reference: Sanglard D, et al. (1995) Mechanisms of resistance to azole antifungal agents in Candida albicans isolates from AIDS patients involve specific multidrug transporters. Antimicrob Agents Chemother 39(11):2378-86

Reference Help

Abstract


Azole antifungal agents, and especially fluconazole, have been used widely to treat oropharyngeal candidiasis in patients with AIDS. An increasing number of cases of clinical resistance against fluconazole, often correlating with in vitro resistance, have been reported. To investigate the mechanisms of resistance toward azole antifungal agents at the molecular level in clinical C. albicans isolates, we focused on resistance mechanisms related to the cellular target of azoles, i.e., cytochrome P450(14DM) (14DM) and those regulating the transport or accumulation of fluconazole. The analysis of sequential isogenic C. albicans isolates with increasing levels of resistance to fluconazole from five AIDS patients showed that overexpression of the gene encoding 14DM either by gene amplification or by gene deregulation was not the major cause of resistance among these clinical isolates. We found, however, that fluconazole-resistant C. albicans isolates failed to accumulate 3H-labelled fluconazole. This phenomenon was reversed in resistant cells by inhibiting the cellular energy supply with azide, suggesting that resistance could be mediated by energy-requiring efflux pumps such as those described as ATP-binding cassette (ABC) multidrug transporters. In fact, some but not all fluconazole-resistant clinical C. albicans isolates exhibited up to a 10-fold relative increase in mRNA levels for a recently cloned ABC transporter gene called CDR1. In an azole-resistant C. albicans isolate not overexpressing CDR1, the gene for another efflux pump named BENr was massively overexpressed. This gene was cloned from C. albicans for conferring benomyl resistance in Saccharomyces cerevisiae. Therefore, at least the overexpression or the deregulation of these two genes potentially mediates resistance to azoles in C. albicans clinical isolates from AIDS patients with oropharyngeal candidiasis. Involvement of ABC transporters in azole resistance was further evidenced with S. cerevisiae mutants lacking specific multidrug transporters which were rendered hypersusceptible to azole derivatives including fluconazole, itraconazole, and ketoconazole.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Sanglard D, Kuchler K, Ischer F, Pagani JL, Monod M, Bille J
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference