Reference: Shuster EO and Guthrie C (1990) Human U2 snRNA can function in pre-mRNA splicing in yeast. Nature 345(6272):270-3

Reference Help

Abstract


The removal of introns from messenger RNA precursors requires five small nuclear RNAs (snRNAs), contained within ribonucleoprotein particles (snRNPs), which complex with the pre-mRNA and other associated factors to form the spliceosome. In both yeast and mammals, the U2 snRNA base pairs with sequences surrounding the site of lariat formation. Binding of U2 snRNP to the highly degenerate branchpoint sequence in mammalian introns is absolutely dependent on an auxiliary protein, U2AF, which recognizes a polypyrimidine stretch adjacent to the 3' splice site. The absence of this sequence motif in yeast introns has strengthened arguments that the two systems are fundamentally different. Deletion analyses of the yeast U2 gene have confirmed that the highly conserved 5' domain is essential, although the adjacent approximately 950 nucleotides can be deleted without any phenotypic consequence. A 3'-terminal domain of approximately 100 nucleotides is also required for wild-type growth rates; the highly conserved terminal loop within this domain (loop IV) may provide specific binding contacts for two U2-specific snRNP proteins. We have replaced the single copy yeast U2 (yU2) gene with human U2 (hU2), expecting that weak or no complementation would provide an assay for cloning additional splicing factors, such as U2AF. We report here that hU2 can complement the yeast deletion with surprising efficiency. The interactions governing spliceosome assembly and intron recognition are thus more conserved than previously suspected. Paradoxically, the conserved loop IV sequence is dispensable in yeast.

Reference Type
Journal Article | Research Support, U.S. Gov't, Non-P.H.S. | Research Support, U.S. Gov't, P.H.S.
Authors
Shuster EO, Guthrie C
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference