Reference: Gonen H, et al. (1996) Protein synthesis elongation factor EF-1 alpha is an isopeptidase essential for ubiquitin-dependent degradation of certain proteolytic substrates. Adv Exp Med Biol 389:209-19

Reference Help

Abstract


Targeting of different cellular proteins for conjugation and subsequent degradation via the ubiquitin pathway involves diverse recognition signals and distinct enzymatic factors. A few proteins are recognized via their N-terminal amino acid residue and conjugated by a ubiquitin-protein ligase that recognizes this residue. However, most substrates, including N-alpha-acetylated proteins that constitute the vast majority of cellular proteins, are targeted by different signals and are recognized by yet unknown ligases. In addition to the ligases, other factors may also be specific for the recognition of this subset of proteins. We have previously shown that degradation of N-terminally blocked proteins require a specific factor, designated FH, and that the factor acts along with the 26S protease complex to degrade ubiquitin-conjugated proteins (Gonen et al., 1991). Further studies have shown that FH is identical to the protein synthesis elongation factor EF-1 alpha, and that it can be substituted by the bacterial elongation factor EF-Tu (Gonen et al., 1994). This, rather surprising, finding raises two important and interesting problems. The first involves the mechanism of action of the factor and the second the possibility that protein synthesis and degradation may be regulated by a commonly shared factor. Here, we demonstrate that EF-1 alpha is a ubiquitin C-terminal hydrolase (isopeptidase) that is probably involved in trimming the conjugates to lower molecular weight forms recognized by the 26S proteasome complex. Additional findings demonstrate that its activity is inhibited specifically by tRNA. This finding raises the possibility that under anabolic conditions, when the factor is associated with AA.tRNA and GTP, it is active in protein synthesis but inactive in proteolysis. Under catabolic conditions, when the factor is predominantly found in its apo form, it is active in proteolysis.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Gonen H, Dickman D, Schwartz AL, Ciechanover A
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference