Reference: Chellappa R, et al. (2001) The membrane proteins, Spt23p and Mga2p, play distinct roles in the activation of Saccharomyces cerevisiae OLE1 gene expression. Fatty acid-mediated regulation of Mga2p activity is independent of its proteolytic processing into a soluble transcription activator. J Biol Chem 276(47):43548-56

Reference Help

Abstract


The Saccharomyces OLE1 gene encodes the Delta-9 fatty acid desaturase, an enzyme that converts saturated fatty acyl-CoAs into cis-Delta-9 unsaturated fatty acids. OLE1 gene expression is regulated by unsaturated fatty acids, which repress transcription and destabilize the OLE1 mRNA. Expression of OLE1 is activated by N-terminal proteolytic fragments of two homologous endoplasmic reticulum membrane proteins, Spt23p and Mga2p. Disruption of either gene does not significantly affect cell growth or fatty acid metabolism; cells that contain null alleles of both genes, however, are unsaturated fatty acid auxotrophs. An analysis of spt23Delta and mga2Delta strains shows that Spt23p and Mga2p differentially activate and regulate OLE1 transcription. In glucose-grown cells, both genes activate transcription to similar levels of activity. Expressed alone, Mga2p induces high levels of OLE1 transcription in cells exposed to cobalt or grown in glycerol-containing medium. Spt23p expressed alone activates OLE1 transcription to levels similar to those in wild type cells. OLE1 expression is strongly repressed by unsaturated fatty acids in spt23Delta or mga2Delta cells, under all growth conditions. To test if OLE1 expression is controlled by fatty acids at the level of membrane proteolysis, soluble N-terminal fragments of Spt23p and Mga2p that lack their membrane-spanning regions (Deltatm) were expressed under the control of their native promoters in spt23Delta;mga2Delta cells. Under those conditions, Mga2pDeltatm acts as a powerful transcription activator that is strongly repressed by unsaturated fatty acids. By comparison, the Spt23pDeltatm polypeptide weakly activates transcription and shows little regulation by unsaturated fatty acids. Co-expression of the two soluble fragments results in activation to levels observed with the Mga2pDeltatm protein alone. The fatty acid repression of transcription under those conditions is attenuated by Spt23Deltatm, however, suggesting that the two proteins may interact to modulate OLE1 gene expression.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Chellappa R, Kandasamy P, Oh CS, Jiang Y, Vemula M, Martin CE
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference