Reference: Newman M, et al. (1993) X-ray analyses of aspartic proteinases. V. Structure and refinement at 2.0 A resolution of the aspartic proteinase from Mucor pusillus. J Mol Biol 230(1):260-83

Reference Help

Abstract


The structure of mucor pusillus pepsin (EC 3.4.23.6), the aspartic proteinase from Mucor pusillus, has been refined to a crystallographic R-factor of 16.2% at 2.0 A resolution. The positions of 2638 protein atoms, 221 solvent atoms and a sulphate ion have been determined with an estimated root-mean-square (r.m.s.) error of 0.15 to 0.20 A. In the final model, the r.m.s. deviation from ideality for bond distances is 0.022 A, and for angle distances it is 0.050 A. Comparison of the overall three-dimensional structure with other aspartic proteinases shows that mucor pusillus pepsin is as distant from the other fungal enzymes as it is from those of mammalian origin. Analysis of a rigid body shift of residues 190 to 302 shows that mucor pusillus pepsin displays one of the largest shifts relative to other aspartic proteinases (14.4 degrees relative to endothiapepsin) and that changes have occurred at the interface between the two rigid bodies to accommodate this large shift. A new sequence alignment has been obtained on the basis of the three-dimensional structure, enabling the positions of large insertions to be identified. Analysis of secondary structure shows the beta-sheet to be well conserved whereas alpha-helical elements are more variable. A new alpha-helix hN4 is formed by a six-residue insertion between positions 131 and 132. Most insertions occur in loop regions: -5 to 1 (five residues relative to porcine pepsin): 115 to 116 (six residues); 186 to 187 (four residues); 263 to 264 (seven residues); 278 to 279 (four residues); and 326 to 332 (six residues). The active site residues are highly conserved in mucor pusillus pepsin; r.m.s. difference with rhizopuspepsin is 0.37 A for 25 C alpha atom pairs. However, residue 303, which is generally conserved as an aspartate, is changed to an asparagine in mucor pusillus pepsin, possibly influencing pH optimum. Substantial changes have occurred in the substrate binding cleft in the region of S1 and S3 due to the insertion between 115 and 116 and the rearrangement of loop 9-13. Residue Asn219 necessitates a shift in position of substrate main-chain atoms to maintain hydrogen bonding pattern. Invariant residues Asp11 and Tyr14 have undergone a major change in conformation apparently due to localized changes in molecular structure. Both these residues have been implicated in zymogen stability and activation.

Reference Type
Comparative Study | Journal Article | Research Support, Non-U.S. Gov't
Authors
Newman M, Watson F, Roychowdhury P, Jones H, Badasso M, Cleasby A, Wood SP, Tickle IJ, Blundell TL
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference