Reference: Bullock TL, et al. (1996) Peptide aldehyde complexes with wheat serine carboxypeptidase II: implications for the catalytic mechanism and substrate specificity. J Mol Biol 255(5):714-25

Reference Help

Abstract


The structures of two ternary complexes of wheat serine carboxypeptidase II (CPD-WII), with a tetrapeptide aldehyde and a reaction product arginine, have been determined by X-ray crystallography at room temperature and -170 degrees. The peptide aldehydes, antipain and chymostatin, form covalent adducts with the active-site serine 146. The CPD-WII antipain arginine model has a standard crystallographic R-factor of 0.162, with good geometry at 2.5 A resolution for data collected at room temperature. The -170 degrees C model of the chymostatin arginine complex has an R-factor of 0.174, with good geometry using data to 2.1 A resolution. The structures suggest binding subsites N-terminal to the scissile bond. All four residues of chymostatin are well-localized in the putative S1 through S4 sites, while density is apparent only in S1 and S2 for antipain. In the S1 site, Val340 and 341, Phe215 and Leu216 form a hydrophobic binding surface, not a pocket, for the P1 phenylalanyl side-chain of chymostatin. The P1 arginyl of antipain also binds at this site, but the positive charge appears to be stabilized by additional solvent molecules. Thus, the hybrid nature of the S1 site accounts for the ability of CPD-WII to accept both hydrophobic and basic residues at P1. Hydrogen bonds to the peptide substrate backbone are few and are made primarily with side-chains on the enzyme. Thus, substrate recognition by CPD-WII appears to have nothing in common with that of the other families of serine proteinases. The hemiacetal linkages to the essential Ser146 are of a single stereoisomer with tetrahedral geometry, with an oxygen atom occupying the "oxyanion hole" region of the enzyme. This atom accepts three hydrogen bonds, two from the polypeptide backbone and one from the positively-charged amino group of bound arginine, and must be negatively charged. Thus, the combination of ligands forms an excellent approximation to the oxyanion intermediate formed during peptide hydrolysis. Surprisingly, the (R) stereochemistry at the hemiacetal linkage is opposite to that expected by comparison to previously determined structures of peptide aldehydes complexed with Streptomyces griseus proteinase A. This is shown to be a consequence of the approximate mirror symmetry of the arrangement of catalytic groups in the two families of serine proteases and suggests that the stereochemical course of the two enzymatic reactions differ in handedness.

Reference Type
Comparative Study | Journal Article
Authors
Bullock TL, Breddam K, Remington SJ
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference