The crystal structure of electron transfer flavoprotein (ETF) from Paracoccus denitrificans was determined and refined to an R-factor of 19.3% at 2.6 A resolution. The overall fold is identical to that of the human enzyme, with the exception of a single loop region. Like the human structure, the structure of the P. denitrificans ETF is comprised of three distinct domains, two contributed by the alpha-subunit and the third from the beta-subunit. Close analysis of the structure reveals that the loop containing betaI63 is in part responsible for conferring the high specificity of AMP binding by the ETF protein. Using the sequence and structures of the human and P. denitrificans enzymes as models, a detailed sequence alignment has been constructed for several members of the ETF family, including sequences derived for the putative FixA and FixB proteins. From this alignment, it is evident that in all members of the ETF family the residues located in the immediate vicinity of the FAD cofactor are identical, with the exception of the substitution of serine and leucine residues in the W3A1 ETF protein for the human residues alphaT266 and betaY16, respectively. Mapping of ionic differences between the human and P. denitrificans ETF onto the structure identifies a surface that is electrostatically very similar between the two proteins, thus supporting a previous docking model between human ETF and pig medium-chain acyl-CoA dehydrogenase (MCAD). Analysis of the ionic strength dependence of the electron transfer reaction between either human or P. denitrificans ETF and MCAD demonstrates that the human ETF functions optimally at low ( approximately 10 mequiv) ionic strength, while P. denitrificans ETF is a better electron acceptor at higher (>75 mequiv) ionic strength. This suggests that the electrostatic surface potential of the two proteins is very different and is consistent with the difference in isoelectric points between the proteins. Analysis of the electrostatic potentials of the human and P. denitrificans ETFs reveals that the P. denitrificans ETF is more negatively charged. This excess negative charge may contribute to the difference in redox potentials between the two ETF flavoproteins and suggests an explanation for the opposing ionic strength dependencies for the reaction of MCAD with the two ETFs. Furthermore, by analysis of a model of the previously described human-P. denitrificans chimeric ETF protein, it is possible to identify one region of ETF that participates in docking with ETF-ubiquinone oxidoreductase, the physiological electron acceptor for ETF.
Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.
Evidence ID | Analyze ID | Gene/Complex | Systematic Name/Complex Accession | Qualifier | Gene Ontology Term ID | Gene Ontology Term | Aspect | Annotation Extension | Evidence | Method | Source | Assigned On | Reference |
---|
Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.
Evidence ID | Analyze ID | Gene | Gene Systematic Name | Phenotype | Experiment Type | Experiment Type Category | Mutant Information | Strain Background | Chemical | Details | Reference |
---|
Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.
Evidence ID | Analyze ID | Gene | Gene Systematic Name | Disease Ontology Term | Disease Ontology Term ID | Qualifier | Evidence | Method | Source | Assigned On | Reference |
---|
Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.
Evidence ID | Analyze ID | Regulator | Regulator Systematic Name | Target | Target Systematic Name | Direction | Regulation of | Happens During | Regulator Type | Direction | Regulation Of | Happens During | Method | Evidence | Strain Background | Reference |
---|
Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.
Site | Modification | Modifier | Source | Reference |
---|
Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.
Evidence ID | Analyze ID | Interactor | Interactor Systematic Name | Interactor | Interactor Systematic Name | Allele | Assay | Annotation | Action | Phenotype | SGA score | P-value | Source | Reference | Note |
---|
Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.
Evidence ID | Analyze ID | Interactor | Interactor Systematic Name | Interactor | Interactor Systematic Name | Assay | Annotation | Action | Modification | Source | Reference | Note |
---|
Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.
Complement ID | Locus ID | Gene | Species | Gene ID | Strain background | Direction | Details | Source | Reference |
---|
Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; download this table as a .txt file using the Download button;
Evidence ID | Analyze ID | Dataset | Description | Keywords | Number of Conditions | Reference |
---|