Reference: Ahmadian MR, et al. (1996) Structural differences in the minimal catalytic domains of the GTPase-activating proteins p120GAP and neurofibromin. J Biol Chem 271(27):16409-15

Reference Help

Abstract


The kinetic properties for the enzymatic stimulation of the GTPase reaction of p21(ras) by the two GTPase-activating proteins (GAPs) p120(GAP) and neurofibromin are different. In order to understand these differences and since crystallization attempts have only been successful with truncated fragments, structure/function requirements of the catalytic core of these proteins were investigated. Differences in size of the minimal catalytic domains of these two proteins were found as determined by limited proteolysis. The minimal catalytic domain has a molecular mass of 30 kDa in the case of p120(GAP) and of 26 kDa in the case of neurofibromin. Both catalytic domains contain the homology boxes as well as the residues perfectly conserved among all Ras GAPs. The C termini of these fragments are identical, whereas the N-terminal part of the minimal p120(GAP) domain is 47 amino acids longer. These newly identified minimal catalytic fragments were as active in stimulating GTPase activity toward p21(ras) as the corresponding larger fragments GAP-334 and NF1-333 from which they had been generated via proteolytic digestion. Recently it was postulated that a fragment of 91 amino acids from neurofibromin located outside the conserved domain contains catalytic activity. In our hands this protein is unstable and has no catalytic activity. Thus, we believe that we have defined the true minimal domains of p120(GAP) (GAP-273, residues Met714-His986) and neurofibromin (NF1-230, residues Asp1248-Phe1477), which can be expressed via LMM fusion vectors in Escherichia coli and isolated in high purity.

Reference Type
Comparative Study | Journal Article
Authors
Ahmadian MR, Wiesmüller L, Lautwein A, Bischoff FR, Wittinghofer A
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference