Reference: Van Sloun PP, et al. (2002) Involvement of mouse Rev3 in tolerance of endogenous and exogenous DNA damage. Mol Cell Biol 22(7):2159-69

Reference Help

Abstract


The Rev3 gene of Saccharomyces cerevisiae encodes the catalytic subunit of DNA polymerase zeta that is implicated in mutagenic translesion synthesis of damaged DNA. To investigate the function of its mouse homologue, we have generated mouse embryonic stem cells and mice carrying a targeted disruption of Rev3. Although some strain-dependent variation was observed, Rev3(-/-) embryos died around midgestation, displaying retarded growth in the absence of consistent developmental abnormalities. Rev3(-/-) cell lines could not be established, indicating a cell-autonomous requirement of Rev3 for long-term viability. Histochemical analysis of Rev3(-/-) embryos did not reveal aberrant replication or cellular proliferation but demonstrated massive apoptosis in all embryonic lineages. Although increased levels of p53 are detected in Rev3(-/-) embryos, the embryonic phenotype was not rescued by the absence of p53. A significant increase in double-stranded DNA breaks as well as chromatid and chromosome aberrations was observed in cells from Rev3(-/-) embryos. The inner cell mass of cultured Rev3(-/-) blastocysts dies of a delayed apoptotic response after exposure to a low dose of N-acetoxy-2-acetylaminofluorene. These combined data are compatible with a model in which, in the absence of polymerase zeta, double-stranded DNA breaks accumulate at sites of unreplicated DNA damage, eliciting a p53-independent apoptotic response. Together, these data are consistent with involvement of polymerase zeta in translesion synthesis of endogenously and exogenously induced DNA lesions.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Van Sloun PP, Varlet I, Sonneveld E, Boei JJ, Romeijn RJ, Eeken JC, De Wind N
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference