Reference: Kurtz JE, et al. (2002) The URH1 uridine ribohydrolase of Saccharomyces cerevisiae. Curr Genet 41(3):132-41

Reference Help

Abstract


In the yeast Saccharomyces cerevisiae, uridine ribohydrolase activity is important for recycling, via the salvage pathway, pyrimidine deoxy- and ribonucleosides into uracil required for the growth of strains lacking the de novo pyrimidine synthesis pathway. We have shown that not only uridine and cytidine, but also 5-fluorouridine, 5-fluorocytidine and deoxycytidine are substrates for this enzyme. We identified, cloned and characterized the corresponding URH1 gene and its physiological function was determined by the measurement of metabolic fluxes in several mutants impaired in the pyrimidine salvage pathway. Sequence comparison revealed strong homology between Urh1p and the inosine/uridine-preferring nucleosidase and inosine/adenosine/guanosine nucleoside hydrolase proteins from the parasitic organisms Crithidia fasciculata and Trypanosoma brucei brucei. Moreover, the Asp and His residues in the putative active site were conserved. Site-directed mutagenesis demonstrated that the conserved His residue is involved in catalysis. These results allow us to speculate that the structure and catalytic mechanism of Urh1p are similar to the inosine/uridine nucleoside hydrolase from C. fasciculata.

Reference Type
Journal Article
Authors
Kurtz JE, Exinger F, Erbs P, Jund R
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference