Reference: Scheibner KA, et al. (2002) Investigation of the roles of catalytic residues in serotonin N-acetyltransferase. J Biol Chem 277(20):18118-26

Reference Help

Abstract


Serotonin N-acetyltransferase (arylalkylamine N-acetyltransferase (AANAT)) is a critical enzyme in the light-mediated regulation of melatonin production and circadian rhythm. It is a member of the GNAT (GCN-5-related N-acetyltransferase) superfamily of enzymes, which catalyze a diverse array of biologically important acetyl transfer reactions from antibiotic resistance to chromatin remodeling. In this study, we probed the functional properties of two histidines (His-120 and His-122) and a tyrosine (Tyr-168) postulated to be important in the mechanism of AANAT based on prior x-ray structural and biochemical studies. Using a combination of steady-state kinetic measurements of microviscosity effects and pH dependence on the H122Q, H120Q, and H120Q/H122Q AANAT mutants, we show that His-122 (with an apparent pK(a) of 7.3) contributes approximately 6-fold to the acetyltransferase chemical step as either a remote catalytic base or hydrogen bond donor. Furthermore, His-120 and His-122 appear to contribute redundantly to this function. By analysis of the Y168F AANAT mutant, it was demonstrated that Tyr-168 contributes approximately 150-fold to the acetyltransferase chemical step and is responsible for the basic limb of the pH-rate profile with an apparent (subnormal) pK(a) of 8.5. Paradoxically, Y168F AANAT showed 10-fold enhanced apparent affinity for acetyl-CoA despite the loss of a hydrogen bond between the Tyr phenol and the CoA sulfur atom. The X-ray crystal structure of Y168F AANAT bound to a bisubstrate analog inhibitor showed no significant structural perturbation of the enzyme compared with the wild-type complex, but revealed the loss of dual inhibitor conformations present in the wild-type complex. Taken together with kinetic measurements, these crystallographic studies allow us to propose the relevant structural conformations related to the distinct alkyltransferase and acetyltransferase reactions catalyzed by AANAT. These findings have significant implications for understanding GNAT catalysis and the design of potent and selective inhibitors.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Scheibner KA, De Angelis J, Burley SK, Cole PA
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference