Reference: Watson KA, et al. (1994) Design of inhibitors of glycogen phosphorylase: a study of alpha- and beta-C-glucosides and 1-thio-beta-D-glucose compounds. Biochemistry 33(19):5745-58

Reference Help

Abstract


alpha-D-Glucose is a weak inhibitor of glycogen phosphorylase b (Ki = 1.7 mM) and acts as a physiological regulator of hepatic glycogen metabolism. Glucose binds to phosphorylase at the catalytic site and results in a conformational change that stabilizes the inactive T state of the enzyme, promoting the action of protein phosphatase 1 and stimulating glycogen synthase. It has been suggested that, in the liver, glucose analogues with greater affinity for glycogen phosphorylase may result in a more effective regulatory agent. Several alpha- and beta-anhydroglucoheptonic acid derivatives and 1-deoxy-1-thio-beta-D-glucose analogues have been synthesized and tested in a series of crystallographic and kinetic binding studies with glycogen phosphorylase. The structural results of the bound enzyme-ligand complexes have been analyzed, together with the resulting affinities, in an effort to understand and exploit the molecular interactions that might give rise to a better inhibitor. This work has shown the following: (i) Similar affinities may be obtained through different sets of interactions. Specifically, in the case of the alpha- and beta-glucose-C-amides, similar Ki's (0.37 and 0.44 mM, respectively) are obtained with the alpha-anomer through interactions from the ligand via water molecules to the protein and with the beta-anomer through direct interaction from the ligand to the protein. Thus, hydrogen bonds through water can contribute binding energy similar to that of hydrogen bonds directly to the protein. (ii) Attempts to improve the inhibition by additional groups did not always lead to the expected result. The addition of nonpolar groups to the alpha-carboxamide resulted in a change in conformation of the pyranose ring from a chair to a skew boat and the consequent loss of favorable hydrogen bonds and increase in the Ki. (iii) The addition of polar groups to the alpha-carboxamide led to compounds with the chair conformation, and in the examples studied, it appears that hydration by a water molecule may provide sufficient stabilization to retain the chair conformation. (iv) The best inhibitor was N-methyl-beta-glucose-C-carboxamide (Ki = 0.16 mM), which showed a 46-fold improvement in Ki from the parent beta-D-glucose. The decrease in Ki may be accounted for by a single hydrogen bond from the amide nitrogen to a main-chain carbonyl oxygen, an increase in entropy through displacement of a water molecule, and favorable van der Waals contacts between the methyl substituent and nonpolar protein residues.(ABSTRACT TRUNCATED AT 250 WORDS)

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Watson KA, Mitchell EP, Johnson LN, Son JC, Bichard CJ, Orchard MG, Fleet GW, Oikonomakos NG, Leonidas DD, Kontou M
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference