Reference: Imazawa Y, et al. (2002) The fission yeast RPA21 subunit of RNA polymerase I: an evolutionarily conserved subunit interacting with ribosomal DNA (rDNA) transcription factor Rrn3p for recruitment to rDNA promoter. Genes Genet Syst 77(3):147-57

Reference Help

Abstract


Recruitment of RNA polymerases to the cognate promoter is a key step for the transcription initiation of specific genes in eukaryotes. Recently, RNA polymerase I (pol I) of Saccharomyces cerevisiae was shown to be recruited to the rDNA promoter via interaction between Rrn3p, a conserved transcription factor for rDNA, and A43, a subunit specific to pol I. The question of whether a similar interaction for pol I recruitment is conserved in other eukaryotes remains to be answered. We show here that Schizosaccharomyces pombe rpa21(+) encodes a protein of apparent molecular mass 21 kD which shows 36% identity to the A43 subunit of pol I in S. cerevisiae, and that rpa21(+) is essential for cell growth. To gain further insight into the functions of RPA21, we isolated a total of 22 temperature-sensitive (ts) mutants of rpa21(+) and found that most of the substitutions causing the ts phenotype are clustered in the N-terminal half of RPA21. The ts mutants showed a markedly reduced amount of primary transcripts of rDNA immediately after temperature shift-up. Over-expression of S. pombe rrn3(+) in the ts mutants suppressed the growth defect in an allele-specific manner. Therefore, we conclude that S. pombe RPA21 plays a functional role similar to that of A43 in S. cerevisiae and that the mechanism of recruitment of pol I to the rDNA promoter by the interaction of a specific pol I subunit with Rrn3p is evolutionarily conserved.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, Non-P.H.S.
Authors
Imazawa Y, Hisatake K, Nakagawa K, Muramatsu M, Nogi Y
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference